Saturday, March 4, 2023

Chapter-09: Transfer of Heat

After studying this unit, the students will be able to:
  • Recall that thermal energy is transferred from a region of higher temperature to a region of lower temperature.
  • Describe in terms of molecules and electrons, how heat transfer occurs in solids.
  • State the factors affecting the transfer of heat through solid conductors and hence, define the term Thermal Conductivity.
  • Solve problems based on thermal conductivity of solid conductors.
  • Write examples of good and bad conductors of heat and describe their uses.
  • Explain the convection currents in fluids due to difference in density.
  • State some examples of heat transfer by convection in everyday life.
  • Explain that insulation reduces energy transfer by conduction.
  • Describe the process of radiation from all objects.
  • Explain that energy transfer of a body by radiation does not require a material medium and rate of energy transfer.

Chapter-08: Thermal Properties of Matter


After studying this unit, the students will be able to:
  • Define temperature (as quantity which determines the direction of flow of thermal energy).
  • Define heat (as the energy transferred resulting from the temperature difference between two objects).
  • List basic thermometric properties for a material to construct a thermometer.
  • Convert the temperature from one scale to another
  • Describe rise in temperature of a body in terms of an increase in its internal energy.
  • Define the terms heat capacity and specific heat capacity.
  • Describe heat of fusion and heat of vaporization.
  • Describe experiments to determine heat of fusion and heat of vaporization of ice and water respectively by sketching temperature-time graph on heating ice.
  • Explain the process of evaporation and the difference between boiling and evaporation.
  • Explain that evaporation causes cooling.
  • List the factors which influence surface evaporation.
  • Describe qualitatively the thermal expansion of solids.
  • Explain thermal expansion of liquids.
  • Solve numerical problems based on the mathematical relations learnt in this unit.

Chapter-07: Properties of Matter


After studying this unit, the students will be able to:
  • State kinetic molecular model of matter (solid, liquid and gas forms).
  • Describe briefly the fourth state of matter, i.e plasma.
  • Define the term density.
  • Compare the densities of a few solids, liquids and gases.
  • Define the term pressure (as a force acting normally on unit area).
  • Explain how pressure varies with force and area in the context of everyday examples.
  • Explain that the atmosphere exerts a pressure.
  • Describe how the height of a liquid column may be used to measure the atmospheric pressure.
  • Describe that atmospheric pressure decreases with the increase in height above the Earth's surface.
  • Explalin that changes in atmospheric pressure in a region may indicate a change in the weather.
  • State Pascal's law.
  • Apply and demonstrate the use with examples of Pascal\'s law.
  • State relation for pressure beneath a liquid surface to depth and to density.
  • State Archimedes principle.
  • Determine the density of an object using Archimedes principle.
  • State the uphtrust exerted by a liquid on a body.
  • State principle of floatation
  • State Hooke's law and explain elastic limit.

Chapter-06: Work & Energy

 
After studying this unit, the students will be able to:
  • Define work and its SI unit.
  • Calculate word done using equation: Work = force x distance moved in the direction of force
  • Define energy, kinetic energy and potential energy. State unit of energy.
  • List the different forms of energy with examples.
  • Describe the processes by which energy is converted from one form to another.
  • State mass energy equation E-mc2 and solve problems using it.
  • Describe the process of electricity generation by drawing a block diagram of the process from fossil fuel input to electricity output.
  • List the environmental issues associated with power generation.
  • Explain by drawing energy flow diagrams through steady state systems such as filament lamp, power station, a vehicle travelling at a constant speed on a level road.
  • Solve problems using mathematical relations learnt in this unit.

Chapter-05: Gravitation

After studying this unit, the students will be able to:
  • State Newton's law of gravitation.
  • Explain that the gravitational forces are consistent with Newton's third law.
  • Explain gravitational field as an example of field of force.
  • Define weight (as the force on an object due to gravitational field).
  • Calculate the mass of Earth by using law of gravitation.
  • Solve problems using Newton's of gravitation.
  • Explain that value of g decreases with altitude from the surface of earth.
  • Discuss the importance of Newton's law of gravitation in understanding the motion of satelittes.

Chapter-04: Turning Effects of Force

After studying this unit, the students will be able to:
  • Define like and unlike parallel forces.
  • State head to tail rule of vector addition of forces / vectors.
  • Describe how a force is resoved into its perpendicular components.
  • Determine the magintude and direction of a force from its perpendicular components.
  • Define moment of force or torque as moment = force x perpendicular distance from pivot to the line of action of force.
  • Explain the turning effect of force by relating it to everyday life. - State the principle of moments.
  • Define the centre of mass and centre of gravity of a body.
  • Define couple as a pair of forces tending to produce rotation.
  • Prove that the couple has the same moments about all points.
  • Define equilibrium and classify its types by quoting examples from everyday life.
  • State two conditions for equilibrium of a body.
  • Solve problems on simple balanced systems when bodies are supported by one pivot only.
  • Describe the states of equilibrium and classify them with common examples.
  • Explain effect of the position of the centre of mass on the stabililty of simple objects.

Chapter-03: Dynamics

After studying this unit, the students will be able to:
  • Define momentum, force, inertia, friction and centripetal force.
  • Solve problems using the equation Force = change in momentum / change in time.
  • Explain the concept of force by practical examples of daily life.
  • State Newton's laws of motion.
  • Distinguish between mass and weight and solve problems using F=ma, and w=mg.
  • Calculate tension and acceleration in a string during motion of bodies connected by the string and passing over frictionless pulley using second law of motion.
  • State the law of conversation of momentum.
  • Use the principle of conservation of momentum in the collision of two objects.
  • Determine the velocity after collision of two objects using the law of conservation of momentum.
  • Explain the effect of friction on the motion of a vehicle in the contect of tyre surface, road conditions including skidding, braking force.
  • Demonstrate that rolling friction is much lesser than sliding friction.
  • List various methods to reduce friction.
  • Calculate centripetal force on a body moving in a circle using mv2

Chapter-02: Kinematics


After studying this unit, the students will be able to:
  • Describe the crucial role of Physics in Science, Technology and society.
  • Explain with examples the Science is based on physical quantities which consist of numerical magnitude and a unit.
  • Differentiate between base and derived physical quantities.
  • List the seven units of System International (SI) alongwith their symbols and physical quantities (standard definitions of SI units are not required).
  • Interconvert the prefixes and their symbols to indicate multiple and sub-multiples for both base and derived units.
  • Write the answer in scientific notation in measurements and calculations.
  • Describe the working of Vernier Callipers and screw guage for measuring length.
  • Identify and explain the limitations of measuring instruments such as metre rule, Vernier Callipers and screw guage.